

Version Control And Git

Mark Slater
mslater<at>cern.ch, Physics West 317

Useful Links

As well as using material from courses I have taught, this talk
also borrows from a number of very good sources that go in to
much greater detail about git and how to use it:

● Software Carpentry Course:

http://swcarpentry.github.io/git-novice
● Matthew Brett's 'Curious Coders Guide to Git' Page:

https://matthew-brett.github.io/curious-git
● Git homepage:

https://git-scm.com/

Why do we need Version Control?

● Recording changes
➔ Being able to record every precise change in a (text)

document and record the reasons for that change
● Providing 'backups'

➔ Allowing an easy 'undo' option in case of editing errors
● Reproducibility:

➔ Being able to return to a previous version of a project
and know it's exactly as it was when it was originally
created

● Collaboration:
➔ By keeping track of the versions of files, it is a lot easier

for groups to work on the same project

Version Control in Code Development

● The general points in the previous slide can be applied to any
files in a project, e.g. bid documents, teaching materials, etc.

● However, where Version Control becomes (arguably) essential
is in code development

● Keeping track of changes in code on any significant sized
project is very important to:

➔ Tag releases of code
➔ Compare versions of a code base
➔ Identify where bugs have been introduced
➔ Allow parallel and collaborative code development
➔ Etc., etc.

Aside: Centralised Version Control

Central Repository
My Working Copy

StateFiles

Your Working Copy

StateFiles

Examples
Subversion
CVS
Perforce

Aside: Distributed Version Control

“Central” Repository
My Working Copy

State
Files

Your Working Copy

Files

Examples
Git
Mercurial
Bazaar

Repo

State
Repo

Developing a VCS: Saving a Copy Everyday

● To try to help explain what Git does, let's go through the steps of
essentially coming up with our own VCS

● The most simple VCS is essentially just taking copies (or 'snapshots') of all
the project's files and putting them in a separate directory

● This already ticks several of the boxes we wanted for VCS – reproducibility,
backup, etc. and at it's core, this is all Git is doing!

my_code_project
├── main.py
├── useful_funcs.py
└── README.txt

my_code_project
├── working
│ ├── main.py
│ ├── useful_funcs.py
│ └── README.txt
├── snapshot_2
│ ├── main.py
│ └── README.txt
└── snapshot_1
 └── main.py

This is the working
copy, where edits

will take place

These are the
snapshots made

everyday

Developing a VCS: What did I do again?

● A significant thing that isn't present when just copying a project's directory
is knowing what you did and why

● To get around this, let's add a text file in each snapshot (let's call it a
commit from now on) that includes a short message about what has
changed since the last commit with the author and date/time info of the
commit

● We now have a functional VCS! However, it's not very efficient and is a bit
cumbersome to use.

Note that
message.txt
files in each

snapshot
directory

my_code_project
├── working
│ ├── main.py
│ ├── useful_funcs.py
│ └── README.txt
├── snapshot_2
│ ├── main.py
│ └── README.txt
└── snapshot_1
 └── main.py

my_code_project
├── working
│ ├── main.py
│ ├── useful_funcs.py
│ └── README.txt
├── snapshot_2
│ ├── main.py
│ ├── message.txt
│ └── README.txt
└── snapshot_1
 ├── message.txt
 └── main.py

Developing a VCS: One thing at a time

● At present, each commit is just a copy of the working directory every day,
no matter what has been done

● But what if you get to the end of the day and have 2 or 3 completely
different changes that should go in different commits? Have a staging area!

● You can now choose which changes to add to a particular commit before
actually committing them

my_code_project
├── working
│ ├── main.py
│ ├── useful_funcs.py
│ ├── tests.py
│ └── README.txt
├── staging
│ ├── main.py
│ ├── useful_funcs.py
│ ├── tests.py
│ └── README.txt
├── snapshot_2
│ ├── main.py
│ ├── message.txt
│ └── README.txt
└── snapshot_1
 ├── message.txt
 └── main.py

Changes are
now copied to

the staging
area before

the commit is
created

my_code_project
├── working
│ ├── main.py
│ ├── useful_funcs.py
│ ├── tests.py
│ └── README.txt
├── snapshot_2
│ ├── main.py
│ ├── message.txt
│ └── README.txt
└── snapshot_1
 ├── message.txt
 └── main.py

Developing a VCS: Oops - I caused massive breakage

● What happens if you find that 2 commits ago, you managed to break a
crucial feature?

● What we need to do is copy the appropriate file from the appropriate
commit to our working area ('checkout' the file) and then perform a commit

my_code_project
├── working
│ ├── main.py
│ ├── useful_funcs.py
│ ├── tests.py
│ └── README.txt
├── staging
│ ├── main.py
│ ├── useful_funcs.py
│ ├── tests.py
│ └── README.txt
├── snapshot_2
│ ├── main.py
│ ├── message.txt
│ └── README.txt
└── snapshot_1
 ├── message.txt
 └── main.py

Developing a VCS: Playing nicely with Others

● Let's say you share your repository with someone ('Jane') and in parallel
both develop a 'snapshot_3' commit – what happens?

● After committing your version, you copy Jane's commit directory and call it
'snapshot_3_jane'

● Then you can change your working version (i.e. 'snapshot_3'), apply Jane's
changes and finally make the commit as 'snapshot_4'

● Because you are merging two sets of changes, this final commit is called a
'Merge Commit'

my_code_project
├── working
 [4 files]
├── staging
 [4 files]
├── snapshot_4
 [5 files]
├── snapshot_3_jane
 [5 files]
├── snapshot_3
 [5 files]
└── snapshot_2
 [4 files]

my_code_project
├── working
 [4 files]
├── staging
 [4 files]
└── snapshot_2
 [4 files]

my_code_project
├── working
 [4 files]
├── staging
 [4 files]
├── snapshot_3
 [5 files]
└── snapshot_2
 [4 files]

my_code_project
├── working
 [4 files]
├── staging
 [4 files]
├── snapshot_3_jane
 [5 files]
├── snapshot_3
 [5 files]
└── snapshot_2
 [4 files]

Create
snapshot_3

from staging

Copy jane's
commit over

Apply Jane's
changes to

working and
commit

Developing a VCS: Making a right hash of things
● As you can probably tell, the names for commits are not scalable so a new naming

convention is needed

● Hashing is a very good way to create unique names for things easily as:

➔ It will produce an (almost) unique fixed length string for any input
➔ Small variations in the data will produce very different hashes
➔ It is computationally very quick

● So can we use the only unique file in each commit ('message.txt') to generate a hash and
use that as the directory name for the commit?

● In theory, yes, but now we don't know what order the commits were made in...

my_code_project
├── working
 [4 files]
├── staging
 [4 files]
├── 99b52473039acea4427e13e42b96c78776e2baf5 (snapshot_4)
 [5 files]
├── d396475cc691c8ac7ba7a318726f220c924cf60b (snapshot_3_jane)
 [5 files]
├── d9accd0a27c78b4333d70ee1a9d7dca0bcc3e682 (snapshot_3)
 [5 files]
└── 00d03e9d1bf4ebaea380da3c62e9226189e39ff4 (snapshot_2)
 [4 files]

Note that this is the
source of all the

strings of hexadecimal
numbers you will deal

with in git!

Developing a VCS: Linked in
● In order to restore the history, we need each commit message to know what it's

parent(s) was
● The hash of the parent can simply be added in a 'Parent' field in the commit

message when committing
● You can then reconstruct the history of your project from these commit messages

but you still get to use the hashed commit names

● Note that, because the message.txt has changed for each commit, the hash has
also changed

● Also, I will start abbreviating the hashes as git does

my_code_project
├── working
 [4 files]
├── staging
 [4 files]
├── c20351… (snapshot_4)
 [5 files]
├── 9920ff… (snapshot_3_jane)
 [5 files]
├── bee09a… (snapshot_3)
 [5 files]
└── 905376… (snapshot_2)
 [4 files]

Message.txt contains -
Parent: 9920ff… bee09a...

Both message.txt files contain -
Parent: 905376...

Developing a VCS: Making an even bigger hash of things

● As you make commits, your will notice you get a copy of every file – this means
your project directory growing continually due to duplicates

● This is where hashes come in again – if you create a hash from the contents of a
file during a commit and it is the same another one, these files are the same

● You can then just save a reference rather than an additional copy of the file

my_code_project
├── working
 [4 files]
├── staging
 [4 files]
├── c20351… (snapshot_4)
 [5 files]
├── 9920ff… (snapshot_3_jane)
 [5 files]
├── bee09a… (snapshot_3)
 [5 files]
└── 905376… (snapshot_2)
 [4 files]

Files renamed
to their

computed hash
value

my_code_project
├── working
 [4 files]
├── staging
 [4 files]
├── repo
│ └── objects
│ ├── 18e92b (main.py)
│ ├── 27e85e (useful_funcs.py)
│ ├── 47eef8 (README.txt)
│ └── 4e3c43 (tests.py)
├── c20351… (snapshot_4)
│ ├── directory_listing.txt
│ └── message.txt
├── 9920ff… (snapshot_3_jane)
│ ├── directory_listing.txt
│ └── message.txt
├── bee09a… (snapshot_3)
│ ├── directory_listing.txt
│ └── message.txt
└── 905376… (snapshot_2)
 ├── directory_listing.txt
 └── message.txt

Directory Listing files contain
things such as

18e92b... main.py
27e85e... useful_funcs.py

Developing a VCS: Cleaning up

● You can actually take the storing of hashed files even further by hashing the
contents of 'message.txt' and 'directory_listing.txt' files and moving to the
'objects' directory as well

● You need to add a reference to the correct 'directory_listing.txt' file in an
additional field to 'message.txt' and also an additional file to point to the last
commit

All content files,
message files and

directory listing files are
now renamed with the
hash of their contents

my_code_project
├── working
 [4 files]
├── staging
 [4 files]
└── repo
 ├── my_bookmark
 └── objects
 ├── 18e92b
 ├── 27e85e
 ├── 47eef8
 ├── 4e3c43
 ├── 47eef8
 ...

The my_bookmark contains
the hash of the latest commit

(message.txt file) which in
turn, knows about it's parent

and the files it contains

my_code_project
├── working
 [4 files]
├── staging
 [4 files]
├── repo
│ └── objects
│ ├── 18e92b (main.py)
│ ├── 27e85e (useful_funcs.py)
│ ├── 47eef8 (README.txt)
│ └── 4e3c43 (tests.py)
├── c20351… (snapshot_4)
│ ├── directory_listing.txt
│ └── message.txt
├── 9920ff… (snapshot_3_jane)
│ ├── directory_listing.txt
│ └── message.txt
├── bee09a… (snapshot_3)
│ ├── directory_listing.txt
│ └── message.txt
└── 905376… (snapshot_2)
 ├── directory_listing.txt
 └── message.txt

Developing a VCS: What we've learned
● This is now a fairly close approximation to what git does
● Most importantly though, hopefully this will help you understand some of the

terminology git uses and what it's trying to do:
➔ Repository – The folder with all the files associated with the project and

git are located
➔ Index – What git calls the 'staging area'
➔ Commit – creating a copy of the index, adding a message and updating

the hash pointers
➔ Hash – Used to create unique filenames based on the file contents
➔ Branch – Refers to a particular development path, e.g. Jane's changes

above
➔ Remote – This is a remote copy of the repository that may have different

commits to yours, e.g. Jane's copy of the directory
➔ HEAD – the hash that points to the last commit of the current branch

you're working on, used to compare the index with when committing.

Good Git Practise
● When working with git (and any VCS actually), there are few general rules:

1. Only include source files
➔ You shouldn't add anything that can be created from the source files (e.g.

*.pyc, *.o, etc.)

2. Write good commit messages
➔ The commit messages can be long so don't just put 'made some changes'

3. Commits should be related
➔ Only include changes that are related in any one commit

4. Keep commits small
➔ Large changes in single commits con be confusing and difficult to solve

conflicts

5. Only commit completed work
➔ Git isn't a backup system – only commit things that are complete and

tested

Live Coding Demo (!)

Web Clients

● Git has several web based servers to provide a central
repository for your project:

➔ Github
➔ Gitlab (See BEAR's version!)
➔ Bitbucket

● They all allow similar functionality that extend that of git
itself, notably with:

➔ Issue Tracking
➔ Release Tracking
➔ Integrated Testing
➔ Etc.

Graphical Clients

● In addition to the web options, there are also graphical
clients that have all the git functionality but have a GUI

➔ Github has it's own client
➔ GitKraken
➔ Git-gui
➔ SourceTree

Going Further (1)

● Forking
➔ This is associated with the web clients and is similar to a 'git clone'
➔ It allows you to make a clone of a repo into your account to enable

you to work on it
➔ You can then request your changes be merged from your fork with a

'Pull Request'
● Tagging

➔ If you hit a point that you want to make a 'release' or take a named
'snapshot', you can use tagging

➔ All this does is create a pointer to a specific commit that you can
refer to later

Going Further (2)
● Using branches

➔ The way git handles branches is one of it's main selling points and it's encouraged to use
them in development. Gitflow is a typical model:

3 Main branches:
Master – Just contains releases

Develop – feature branches are added
Release – release candidates tested

ALL features
developed in their

own separate
branches and

merged to develop
when complete

Only when a release
candidate has passed all

tests, it gets tagged on the
master branch any bugfixes

added back in to develop

For more info:
https://datasift.github.io/gitflow/IntroducingGit

Flow.html

Summary

Hopefully that has demystified some of what git is, does and
how it works if you haven't used it before. For more info, do
please have a loot at:

● Software Carpentry Course:

http://swcarpentry.github.io/git-novice
● Matthew Brett's 'Curious Coders Guide to Git' Page:

https://matthew-brett.github.io/curious-git
● Git homepage:

https://git-scm.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

